Striving to provide
a meate online education experience ${ }^{\mathrm{TM}}$

Note: You will only be allowed to submit this test one time. Your score will be averaged in your overall course grade and you will not be able to submit this test again.

Encode the following message:
Do not give up.
Break the message into groups of two letters and use the matrix.

$$
\mathrm{M}=\left[\begin{array}{l}
77 \\
34
\end{array}\right]
$$

$\left.\left.\left[\begin{array}{c}119 \\ 64\end{array}\right]\left[\begin{array}{c}273 \\ 129\end{array}\right],\left[\begin{array}{l}231 \\ 119\end{array}\right], 109\right],[155], 123\right]\left[\begin{array}{l}223 \\ 123\end{array}\right]$

(36	378 98	$\left[\begin{array}{l}210 \\ 140\end{array}\right.$	378 49	\int_{126}^{154}	$\left[\begin{array}{r}78 \\ 189\end{array}\right.$	1129
133 72	$\frac{287}{137}$	$\left[\begin{array}{l}245 \\ 125\end{array}\right]$	238 109	$\left[\begin{array}{l}217 \\ 115\end{array}\right]$	$\left[\begin{array}{l}224 \\ 123\end{array}\right.$	259 12

2 of 25
Determine whether the given ordered set of numbers is a solution of the system of equations.
$(1,-3)$
$x+y=-2$
$x-y=4$
Yes
No
3 of 25
Given a system of two linear equations in two variables, if the graphs of the two equations coincide, then the system is independent.
True
False
4 of 25
Perform the indicated operation where possible.
$\left.\left[\begin{array}{l}-9 \\ 2\end{array}\right]+\begin{array}{cc}6 & 2 \\ 3 & -1\end{array}\right]$
) 9
$\left[\begin{array}{ll}-3 & -7 \\ -6 & -10\end{array}\right]$
$\left[\begin{array}{r}-33 \\ 54\end{array}\right]$
34
64

5 of 25
Find the value(s) of the function, subject to the system of inequalities.
Find the minimum of $\mathrm{P}=23 \mathrm{x}+21 \mathrm{y}+22$ subject to:
$x \geq 0, y \geq 0, x+y \geq 1$.
66
) 43
) 45

- 22

6 of 25
Perform the indicated operation.
Let $\mathrm{C}=\left[\begin{array}{c}1 \\ -3 \\ 2\end{array}\right]$ and $\mathrm{D}=\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]$
Find C-2D.
$\left.\begin{array}{r}3 \\ -9 \\ 6\end{array}\right]$
$\left.\begin{array}{r}-1 \\ 3 \\ -2\end{array} \right\rvert\,$
[-3]

7 of 25
Determine whether the two matrices are inverses of each other by computing their product.
$\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 1 & -2 \\ 1 & 0 & -1\end{array}\right],\left[\begin{array}{rrr}1 & -1 & 2 \\ -3 & -2 & 4 \\ -1 & 1 & 1\end{array}\right]$
No
Yes

8 of 25
Find the inverse, if it exists, of the given matrix

$\left[\begin{array}{ccc}2 & -1 & 0 \\ 3 & -2 & 0 \\ -2 & 3 & 1\end{array}\right]$
$\left[\begin{array}{cccc}{\left[\begin{array}{rrr}2 & -1 & 0 \\ 3 & -2 & 0 \\ 1 & -5 & 4\end{array}\right)}\end{array}\right.$
$\left[\begin{array}{ccc}1 & -1 & 0 \\ 3 & -2 & 1 \\ -5 & 4 & -1\end{array}\right]$
$\left[\begin{array}{ccc}2 & -1 & 0 \\ 3 & 2 & 0 \\ -5 & 4 & 1\end{array}\right]$
$\left[\begin{array}{ccc}2 & -1 & 0 \\ 3 & -2 & 0 \\ -5 & 4 & 1\end{array}\right]$

9 of 25
Solve the system of equations. If the system is dependent, express solutions in terms of the parameter z .

```
\(-2 x+y+4 z=10\)
\(-7 x+4 y-3 z=7\)
( \(19 \mathrm{z}-33,34 \mathrm{z}-56, \mathrm{z})\)
(33-43z, 56-34z, z)
© \((-33+43 z, 10-2 x+4 z, z)\)
( \(-33+43 z, 10+2 x-4 z, z)\)
```

10 of 25
Solve the matrix equation for X .

[^0]11 of 25
A bakery sells three types of cakes．Cake I requires 2 cups of flour， 2 cups of sugar，and 2 eggs． Cake II requires 4 cups of flour， 1 cup of sugar，and 1 egg．Cake III requires 2 cups of flour， 2 cups of sugar，and 3 eggs．Make a 3×3 matrix showing the required ingredients for each cake． Assign the cakes to the rows and the ingredients to the columns．

213
212
242
＋223
41
222
＋242
212
213
要222
或建
223

12 of 25
Solve the matrix equation for X ．

$$
\left.\begin{array}{l}
\mathrm{A}=\left[\begin{array}{ccc}
2 & 2 & 0 \\
-4 & -3 & 2 \\
0
\end{array}\right] \\
-3
\end{array}\right], \mathrm{B}=\left[\begin{array}{c}
{[16} \\
-113 \\
10 \\
-9 \\
-63
\end{array}\right], \mathrm{AX}=\mathrm{B}
$$

13 of 25
Factories A and B sent rice to stores 1 and 2．A sent 10 loads and B sent 22．Store 1 used 15 loads and store 2 used 17．It cost $\$ 200$ to ship from A to $1, \$ 350$ from A to $2, \$ 300$ from B to 1 ，and $\$ 250$ from B to $2 . \$ 7750$ was spent．How many loads went where？
10 from A to 1
0 from A to 2
5 from B to 1
17 from B to 2
0 from A to 1
10 from A to 2
17 from B to 1

5 from B to 2
9 from A to 1
1 from A to 2
6 from B to 1
4 from Y to B
8 from A to 1
2 from A to 2
7 from B to 1
15 from B to 2
14 of 25
Use x for the number of chairs and y for the number of tables made per week. The number of work-hours available for construction and finishing is fixed.

$\mathrm{x} \leq 0$
$\mathrm{y} \leq 0$
$5 x+3 y \leq 30$
$3 x+3 y \leq 45$
$x \geq 0$
$y \geq 0$

15 of 25
Find the value(s) of the function, subject to the system of inequalities.
Find the maximum and minimum of $P=10 x-16 y$ subject to:
$0 \leq x \leq 5,0 \leq y \leq 8,4 x+5 y \leq 30$, and $4 x+3 y \leq 20$

- 50,0
- $-96,0$
- $-67.5,-96$
) $50,-96$
16 of 25
The Acme Class Ring Company designs and sells two types of rings: the VIP and the SST. They can produce up to 24 rings each day using up to 60 total man-hours of labor. It takes 3 man-hours to make one VIP ring, versus 2 man-hours to make one SST ring.

How many of each type of ring should be made daily to maximize the company's profit, if the profit on a VIP ring is $\$ 60$ and on an SST ring is $\$ 20$?
24 VIP and 4 SST
20 VIP and 0 SST
20 VIP and 4 SST
24 VIP and 0 SST
17 of 25
A manufacturer of wooden chairs and tables must decide in advance how many of each item will be made in a given week. Use the table to find the system of inequalities that describes the manufacturer's weekly production.

Use x for the number of chairs and y for the number of tables made per week. The number of work-hours available for construction and finishing is fixed.

	Hours рет chair	Hours per table	
Construction	3	4	36
Finishing	2	2	20
)			
$3 x+4 y \leq 36$			
$2 \mathrm{x}+2 \mathrm{y} \leq 20$			
$x \geq 0$			
$y \geq 0$			
)			
$3 \mathrm{x}+2 \mathrm{y} \leq 36$			
$2 \mathrm{x}+4 \mathrm{y} \leq 20$			
)			
$3 \mathrm{x}+2 \mathrm{y} \leq 56$			
$2 \mathrm{x}+4 \mathrm{y} \leq 56$			
)			
$3 x+4 y \leq 56$			
$2 \mathrm{x}+2 \mathrm{y} \leq 56$			
$x \geq 0$			
$y \geq 0$			

18 of 25
Use the Gauss-Jordan method to solve the system of equations.

```
\(2 \mathrm{x}-5 \mathrm{y}+\mathrm{z}=11\)
\(3 x+y-6 z=1\)
\(5 x-4 y-5 z=12\)
e
    \(\left(\frac{-29 z+16}{17}, \frac{15 z-31}{17}, z\right)\)
)
\(29 z+1615 z+31\)
\(\left(-\frac{17}{17}, \mathrm{z}\right)\)
    \(17 \quad 17\)
\}
\(\left(\frac{29 z+16}{17}, \frac{15 z-31}{17}, z\right)\)
```

$29 z-1615 z-31$

```
(17, 17 ,z)
```

19 of 25
Barnes and Able sell life, health, and auto insurance. Sales for May and June are given in the matrices.
$M=\left[\begin{array}{lll}20000 & 15000 & 8000 \\ 30000 & 0 & 17000\end{array}\right]$
, $\left[\begin{array}{lrr}70,000 & 0 & 30,000 \\ 20,000 & 25,000 & 32,000\end{array}\right]$
Find the matrix that would give total sales for the months of May and June.
$\left[\begin{array}{lll}90,000 & 15,000 & 38,000 \\ 50,000 & 25,000 & 49,000\end{array}\right]$
$\left[\begin{array}{lll}90,000 & 15,000 & 38,000 \\ 50,000 & 25,000 & 32,000\end{array}\right]$
$\left[\begin{array}{lll}90,000 & 0 & 38,000 \\ 50,000 & 0 & 49,000\end{array}\right]$
[140,000 40,000 87,000]

20 of 25
Use the Gauss-Jordan method to solve the system of equations.
$x+y+z=7$

```
\(x-y+2 z=7\)
\(2 x+3 z=14\)
    
    \(3 z+14 z\)
\(\left(\cdots,{ }_{2}, z\right)\)
o
\(\left(\frac{-3 z-14}{2}, \frac{z}{2}, z\right)\)
0
    \(-3 z+14 z\)
\(\left(\frac{-}{2}, \frac{z}{2}\right)\)

    \(-3 z+14\)
\(\left(\frac{}{2}, 2 z, z\right)\)
```

21 of 25
Use the Gauss-Jordan method to solve the system of equations.

```
4x-6y=54
20x-30y=270
(9,-3)
    27 3
(--- - y y y)
%
    27 3
(
```

No Solution
22 of 25
What is the size of the matrix?
$\left[\begin{array}{rr}2 & 9 \\ -5 & 5\end{array}\right]$
) 2
) 4
2×2
1

The Acme Class Ring Company designs and sells two types of rings: the VIP and the SST. They can produce up to 24 rings each day using up to 60 total man-hours of labor. It takes 3 man-hours to make one VIP ring, versus 2 man-hours to make one SST ring.

How many of each type of ring should be made daily to maximize the company's profit, if the profit on a VIP ring is $\$ 40$ and on an SST ring is $\$ 35$?
14 VIP and 10 SST
18 VIP and 6 SST
16 VIP and 8 SST
12 VIP and 12 SST
24 of 25
Perform row operations on the augmented matrix as far as necessary to determine whether the system is independent, dependent, or inconsistent.
$x+y+z=11$
$x-y+3 z=5$
$2 x+2 y+2 z=15$
Inconsistent
Dependent
Independent
25 of 25
Find the order of the matrix product AB and the product BA , whenever the products exist.
A is $2 \times 1, \mathrm{~B}$ is 1×1
$A B$ is $2 \times 1, B A$ is nonexistent.
AB is nonexistent, BA is 1×2.
AB is $1 \times 2, \mathrm{BA}$ is 1×1.
AB is $2 \times 2, \mathrm{BA}$ is 1×1.
Submit

[^0]: $\left.\mathrm{A}=\left[\begin{array}{c}200 \\ -120 \\ -241\end{array}\right], \mathrm{B}=\begin{array}{c}4 \\ 10 \\ 11\end{array}\right], \mathrm{AX}=\mathrm{B}$
 $\left[\begin{array}{c}0 \\ 8 \\ -9\end{array}\right]$
 $\left[\begin{array}{c}2 \\ 6 \\ -9\end{array}\right]$
 $\left.\begin{array}{c}4 \\ \hline\end{array}\right]$
 $\left[\begin{array}{r}3 \\ 6 \\ -10\end{array}\right]$

